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a b s t r a c t

We consider inherent robustness properties of model predictive control (MPC) for continuous-time non-
linear systems with input constraints and terminal constraints. We show that MPC with a nominal pre-
diction model and persistent but bounded disturbances has some degree of inherent robustness when
the terminal control law and the terminal penalty matrix are chosen as the linear quadratic control law
and the related Lyapunov matrix, respectively. We emphasize that the input constraint sets can be any
compact set rather than convex sets, and our results do not depend on the continuity of the optimal cost
function or of the control law in the interior of the feasible region.
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1. Introduction

Model predictive control (MPC) has received remarkable atten-
tion in both practical applications and theoretical research over
the last 30 years since it is capable of explicitly dealing with state
and input constraints (Mayne, Rawlings, Rao, & Scokaert, 2000;
Qin & Badgwell, 2003). The basic idea of standard MPC (Chen
& Allgöwer, 1998; Fontes, 2001; Magni, De Nicolao, & Scattolini,
2001; Mayne et al., 2000) is as follows: Online, a finite horizon
open-loop optimal control problem based on the currentmeasure-
ment of the system states is solved. Then, the first part of the
obtained open-loop optimal input trajectory is applied to the sys-
tem. At the succeeding time instant, the optimal control problem
is solved again using new state measurements and with a shifted
horizon, and the actual control input is updated.
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For a nominally stabilizing model predictive control (MPC)
scheme the presence of disturbances and/or model uncertainties
may lead to performance deterioration or even loss of stability.
An intuitive approach to guarantee robust stability and recursive
feasibility is to use a min–max MPC formulation, where the op-
timal input is determined such that the performance criteria is
minimized for the worst-case uncertainty (Bemporad, Borrelli, &
Morari, 2003; Chen, Scherer, & Allgöwer, 1997; Fontes & Magni,
2003; Limon, Alamo, Salas, & Camacho, 2006; Magni, De Nico-
lao, Scattolini, & Allgöwer, 2003; Raimondo, Limon, Lazar, Magni,
& Camacho, 2009; Scokaert & Mayne, 1998). However, such ap-
proaches are usually computationally expensive. Furthermore, the
optimal input is obtained for a possibly unrealistic worst-case
scenario, which often results in poor performance in the case of
small actual uncertainties. Constraint tightening approaches, as
introduced by Chisci, Rossiter, and Zappa (2001), Limon, Alamo,
and Camacho (2002) and Richards andHow (2006), can avoid com-
putational complexity by using a nominal prediction model and
tightened constraint sets. However, the constraint sets shrink dras-
tically because the ‘‘margin’’, which reflects the effect of uncertain-
ties, increases exponentially with the increase of the prediction
horizon. For linear discrete-time systems with persistent distur-
bances,Mayne, Seron, andRakovic (2005) andRawlings andMayne
(2009) provide a new constraint tightening, tube based robustMPC
scheme, which has fixed tightened sets. The results utilize both
state feedback control and feedforward control action, and have
been extended by Rakovic, Teel, Mayne, and Astolfi (2006); Yu,
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Böhm, Chen, and Allgöwer (2010) to systems with matched non-
linearity and piecewise affine systems. The tube based robust MPC
scheme has also been extended to general discrete-time nonlinear
systems (Mayne, Kerrigan, van Wyk, & Falugi, 2011). It possesses
two loops, where a nominal MPC scheme in the inner loop gener-
ates a reference trajectory and the MPC control in the outer loop
steers trajectories of the uncertain systems towards the reference
trajectory. The schemes are based on the a priori estimation of the
effect of disturbances over the prediction horizon.

Since robust MPC methods are much more complex than those
developed for the nominal case, it is of interest to analyze un-
der which conditions nominal MPC can guarantee robustness with
respect to specific classes of disturbances. The paper (Grimm,
Messina, Tuna, & Teel, 2004) used examples to illustrate that MPC
applied to nonlinear systems can produce nominal asymptotic sta-
bility without any robustness, when the optimization problem
contains state constraints or equality terminal constraints. In the
examples, either the considered nonlinear system is discontinuous
at its equilibrium or the Jacobian linearization of the considered
nonlinear systems is not stabilizable. Under the fundamental as-
sumption that the presence of uncertainties or disturbances do not
cause any loss of feasibility, robustness properties of nominal MPC
algorithms are proved in Magni and Sepulchre (1997), Nicolao,
Magni, and Scattolini (1996) and Scokaert, Rawlings, andMeadows
(1997). The recursive feasibility assumption holds true when the
problem formulation does not include state and input constraints
and when the terminal constraint used to guarantee nominal sta-
bility is also satisfied under perturbed conditions (Magni & Scat-
tolini, 2007). For unconstrained input-affine nonlinear systems, it
is shown in Magni and Sepulchre (1997) that the nominal MPC
control law is inverse optimal. Thus, it is also optimal for a mod-
ified optimal control problem spanning over an infinite horizon.
Due to this inverse optimality property, theMPC control law inher-
its the same robustness properties as the infinite horizon optimal
control assuming that the sampling time goes to zero. Under the
assumption that the optimal cost function is twice continuously
differentiable, it has been shown in Nicolao et al. (1996) that MPC
control law provides robustness with respect to gain perturbations
due to actuator and additive perturbations describing unmodeled
dynamics. Results on inherent robustness with exponentially de-
caying disturbances are reported in Scokaert et al. (1997) with
the assumption that the MPC control law is Lipschitz continuous.
The papers (Findeisen & Allgöwer, 2005; Limon et al., 2009; Pan-
nocchia, Rawlings, & Wright, 2011) show that nominal MPC pos-
sesses inherent robustness properties if the optimal cost function is
locally Lipschitz continuous or the MPC control law is regionally
continuous. However, both the resulting MPC control law and the
optimal value function associated to the optimization problem
defining nominal MPC can be discontinuous (Fontes, 2000; Mead-
ows, Henson, Eaton, & Rawlings, 1995; Rawlings & Mayne, 2009).
While MPC is applied to linear systems with convex constraints,
some robustness exists (Grimm et al., 2004). The result depends on
the fact that continuity of the optimal value function on the interior
of the feasible region is a sufficient condition for robustness, as is
continuity of the feedback law on the interior of the feasible region
(Jiang & Wang, 2001). The paper (Grimm, Messina, Tuna, & Teel,
2007) shows that the system under control is robust to sufficient
small disturbances, if (a) the value function is bounded by a K∞

function of a state measure (related to the distance from the state
to some target set) and this measure is detectable from the stage
cost used in the MPC algorithm; (b) the systems satisfy a defini-
tion that attempts to characterize the robustness properties of the
MPC optimization problem. Instead of the analysis of the inherent
robustness properties of existing nominal MPC schemes, Lazar and
Heemels (2009) and Picasso, Desiderio, and Scattolini (2010, 2011,
2012) propose novel nominal MPC schemes which have some in-
herent robustness properties.
Quasi-infinite horizon MPC (Chen & Allgöwer, 1998; Mayne
et al., 2000) is one of the main results of nonlinear MPC with
guaranteed nominal stability. Our previous conference paper (Yu,
Reble, Chen, & Allgöwer, 2011) considers the inherent robustness
properties of quasi-infinite horizon MPC with input constraints
and a terminal constraint. Although the recursive feasibility is
proved directly, the proof of robust stability is not complete. In
this paper, we rigorously show inherent robustness properties
of quasi-infinite horizon MPC of nonlinear systems with input
constraints, where the disturbances are persistent but bounded
and the optimization problem has a terminal constraint. It is
worth noting that the following analysis does neither assume the
continuity of the optimal cost function nor of the control law, and
hence the results are more general than previous results available
in the literature. It is shown that the degree of robustness depends
on the terminal set and on the terminal penalty function, the
prediction horizon, the upper bound on the disturbances, and the
Lipschitz constant of the system.

The remainder of the paper is organized as follows. The problem
is set up in Section 2. Terminal conditions for nominal stability,
recursive feasibility of the online optimization problem, and robust
stability are proposed in Section 3. Further results on inherent
robustness properties of linear MPC is discussed in 4. Section 5
provides two examples to demonstrate the effectiveness of the
derived results.

1.1. Notations and basic definitions

LetR denote the field of real numbers andRn the n-dimensional
Euclidean space, Z[0,∞) the field of non-negative integers. For a
vector v ∈ Rn, ∥v∥ denotes the 2-norm and ∥v∥Q =


vTQv with

Q ∈ Rn×n and Q > 0. Let M ∈ Rn×n, λmin(M) (λmax(M)) is the
smallest (largest) real part of the eigenvalues ofmatrixM andσ(M)
the largest singular value of M . The operation ⊕ is the addition of
sets A ⊂ Rn and B ⊂ Rn, A ⊕ B :=


a + b ∈ Rn

|a ∈ A, b ∈ B

.

The operation ⊖ is the subtraction of sets A ⊂ Rn and B ⊂ Rn,
where A ⊖ B := {x ∈ Rnx |{x} ⊕ B ⊆ A}. Denote the set
B(x0, δ) := {x ∈ Rn

| ∥x− x0∥ ≤ δ}, B(δ) := {x ∈ Rn
| ∥x∥ ≤ δ},

and ∅ as the empty set. Denote Ln
[a,b] as the space of all Lebesgue

functions mapping from [a, b] to Rn.
We introduce the following definitions which will be used in

the paper:

Definition 1. A system is ultimately bounded if the system con-
verges asymptotically to a bounded set.

Definition 2 (Hausdorff Distance Rawlings & Mayne, 2009). The
Hausdorff distance d(·, ·) between two sets X ⊂ Rn and Y ⊂ Rn

is defined by

d(X, Y) := max

sup
x∈X

d(x, Y), sup
y∈Y

d(y, X)


,

in which d(a, M) denotes the distance of a point a ∈ Rn from a set
M ⊂ Rn, which is defined by

d(a, M) := inf
b∈M

d(a, b),

where d(a, b) = ∥a − b∥.

Definition 3 (Relation). Suppose that both X and Y are compact
sets with X ⊆ Y ⊂ Rn, and X̄ and Ȳ are the boundaries of sets X
and Y, respectively. The relation dr(·, ·) between sets X and Y is
defined by

dr(X, Y) := min
x∈X̄, y∈Ȳ

∥x − y∥.
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2. Problem setup

Consider nonlinear continuous-time systems with additive
exogenous disturbances

ẋR(t) = f (xR(t), u(t)) + w(t), (1a)
w(t) ∈ W, (1b)

where xR(t) ∈ Rnx denotes the system state and u(t) ∈ Rnu the
control input at time instant t , and w(t) ∈ W ⊂ Rnx repre-
sents a persistent disturbance. Here, we assume that W := {w ∈

Rnx | ∥w∥ ≤ β}, i.e., the norm of the disturbance is bounded.
The system is subject to the control constraint

u(t) ∈ U, (2)

where the set U ⊂ Rnu is a compact set and contains 0 ∈ Rnu in its
interior.

The nominal dynamics of the system (1) is defined by

ẋ(t) = f (x(t), u(t)). (3)

The optimization problem in the quasi-infinite horizon MPC is
formulated as follows:

Problem 4.

minimize
u(·)

J(x(t), u(·))

subject to ẋ(τ , x(t)) = f (x(τ , x(t)), u(τ )),
x(t, x(t)) = x(t),
u(τ ) ∈ U, τ ∈ [t, t + Tp],
x(t + Tp, x(t)) ∈ Xf ,

where

J(x(t), u(·)) := ∥x(t + Tp, x(t))∥2
P

+

 t+Tp

t


∥x(s, x(t))∥2

Q + ∥u(s)∥2
R


ds,

is the cost functional, Tp is the prediction horizon, Q ∈ Rnx×nx and
R ∈ Rnu×nu are positive definite state and input weighting matri-
ces. The positive definite matrix P ∈ Rnx×nx is the terminal penalty
matrix, and E (x) := ∥x∥2

P is the terminal penalty function. The ter-
minal set Xf := {x ∈ Rnx | xTPx ≤ α} is a level set of the terminal
penalty function. The term x(·, x(t)) represents the predicted state
trajectory starting from the initial state x(t) under the control u(·).
For simplicity, denote the optimal value of J(x(t), u(·)) as J0(x(t)).
In order to guarantee feasibility and nominal stability, P and Xf
have to satisfy terminal conditions, see Chen and Allgöwer (1998)
andMayne et al. (2000).Wewill introduce these conditions in Sec-
tion 3.

The goal of this paper is to determine the largest upper bound
β on the disturbance w such that the real system is robustly sta-
ble for all w ∈ W , i.e., the real system under nominal MPC control
law is inherently robust, and can endure persistent disturbances
which are less than β in the sense of the norm. Notice here that in
Problem 4, the nominal system is used as prediction model and no
disturbances are taken into account.

Some standing assumptions are stated in the following:

Assumption 5. The system state x can be measured instanta-
neously.

Assumption 6. f is twice continuously differentiable, and f (0, 0)
= 0. Thus, 0 ∈ Rnx is an equilibrium of the nominal system.
According to the principle of MPC, the optimization problem
will be solved repeatedly, when new measurements are available
at the sampling instants tj = jδ, where δ is a sampling time and
0 < δ ≤ Tp, j ∈ Z[0,∞).

Assuming that the minimum is attained, the optimal solution
to Problem 4 is given by the optimal input trajectory, and for any
τ ∈ [t, t + Tp]

u∗(τ , x(t)) := arg min
u(·)∈U

x(t+Tp,x(t))∈Xf

J(x(t), u(τ )).

The applied control is u∗(τ , x(t)), τ ∈ [t, t + δ).

3. Inherent robustness to persistent disturbances

As pointed out before, robust MPC usually leads to either heavy
computational burdenor poor performance, or both of them. In this
section, we discuss the inherent robustness properties of nominal
MPC rather than propose a new robustMPC scheme. First, we recall
a common way to construct the terminal set and the terminal
penalty function of quasi-infinite horizon MPC, which will play an
important role in the analysis of the robustness properties.

3.1. Terminal conditions for nominal stability

Lemma 7 (Chen & Allgöwer, 1998). Suppose that the Jacobian lin-
earization of the nominal system at the origin is stabilizable, K ∈

Rnu×nx is the linear quadratic regulator (LQR) optimal feedback ma-
trix of the linearized system with weighting matrices Q ∈ Rnx×nx and
R ∈ Rnu×nu , where Q > 0 and R > 0. Then, the Lyapunov equation

(A + BK + κ Inx)
TP + P(A + BK + κ Inx) = −Q ∗,

where Q ∗
= Q + K TRK is positive definite, admits a unique pos-

itive definite and symmetric solution P ∈ Rnx×nx , whenever κ ∈

[0, −λmax(A+BK)). Furthermore, there exists a constant α ∈ (0, ∞)
specifying a neighborhood Xf := {x ∈ Rnx | xTPx ≤ α} of the origin
such that

(1) Kx ∈ U, for all x ∈ Xf , i.e., the linear feedback controller respects
the input constraints in Xf ,

(2) Xf is positively invariant for the nominal system controlled by the
local linear feedback u = Kx.

Notice that u(τ ) = Kx(τ ), τ ∈ [t, t + Tp], renders Xf positively
invariant. Hence, it is a feasible solution to Problem 4 provided that
x(t) ∈ Xf .

Remark 8. The terminal control law Kx is never actually applied
to the system in quasi-infinite horizon MPC, and only used to
compute the terminal penalty function and the terminal set, see
also Chen and Allgöwer (1998).

In the setXf , u = Kx guarantees that dE(x)
dt ≤ −xTQ ∗x along the

nominal trajectory, where Q ∗ is defined in Lemma 7. Then, there
exists a positive constant π such that

−xTQ ∗x ≤ −πxTPx, ∀x ∈ Xf ,

i.e., the linear control law u = Kx renders the nominal system
exponentially stable in Xf . The decay rate π can be chosen as
π ≤ π0 = λmin(Q ∗)/λmax(P). This will help us understand the
behavior of the system dynamics under the terminal control law.
Furthermore, wewill prove in Section 3.3 that theMPC control law
has the same robustness properties as the terminal control law.

Lemma 9. If the state x(t) of the nominal system (3) lies in Xf at
time instant t, then there exists an s ∈ [t, t + δ] such that the system
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trajectory under the terminal control law enters into the set

Ω :=

x ∈ Rnx | xTPx ≤ e−π0δα


at the time instant s.

Proof. Since x(t) ∈ Xf , x(t)TPx(t) ≤ α. Due to dE(x)
dt ≤ −xTQ ∗x

and −xTQ ∗x ≤ −π0xTPx, we have dE(x)
dt ≤ −π0xTPx. Therefore,

x(t + δ)TPx(t + δ) ≤ e−π0δα.

Notice that Ω ⊂ Xf since e−π0δ < 1. If the considered opti-
mizationproblem is feasible at the initial time instant and if there is
no disturbance or model uncertainty, then the optimization prob-
lem is feasible for all time instants t and J0(x(tπ )) − J0(x(tv)) ≤

−
 tπ
tv


∥x(s)∥2

Q + ∥u(s)∥2
R


ds, where tπ and tv are any two succes-

sive sampling instants (Chen & Allgöwer, 1998). If the actual sys-
tem trajectory deviates sufficiently small from the nominal system
trajectory, we can still have J0(x(tπ )) − J0(x(tv)) < 0. In other
words, the optimal cost function J0(x) is a candidate Lyapunov
function and provides some degree of robustness if J0(x) is con-
tinuous in x. However, it is well-known that recursive feasibility is
not ensured by the nominal cost constrained minimization for fu-
ture states under any disturbance realization (Chisci et al., 2001),
and J0(x) is not necessarily continuous in x (Grimm et al., 2004). In
the following, an upper bound β on the disturbancew is estimated
which will preserve the guaranteed recursive feasibility of Prob-
lem 4 if the online optimization problem is feasible at the initial
time instant. Then, robust stability is addressed by showing that
the system trajectory will converge to a set around the origin.

3.2. Robust recursive feasibility

In this subsection, we introduce a general lemma which pro-
vides a useful estimate on the deviation of the real system state
from the nominal system state. Based on this lemma, we discuss
the recursive feasibility of nominal MPC with respect to persistent
but bounded disturbances.

Let r be a given constant. The set B(r) is convex and compact.
Since f (·, ·) is twice continuously differentiable on B(r) × U, and
U is a compact set, ∥∂ f /∂x∥ is bounded on B(r) × U. Hence,
f is Lipschitz continuous with respect to x with some Lipschitz
constant v ≥ 0

∥f (y, u) − f (x, u)∥ ≤ v∥y − x∥. (4)

This allows to use the following lemma.

Lemma 10 (Khalil, 2002). Consider the real system (1) and the
nominal system (3), where f (·, ·) is a continuously differentiable
function. Suppose that ∥w(t)∥ ≤ β , then the norm of ∥xR(t) − x(t)∥
satisfies the following inequality

∥xR(t) − x(t)∥ ≤ ∥xR(0) − x(0)∥evt

+
β

v
(evt

− 1), ∀t ∈ [0, Tp + δ], (5)

where x(θ) ∈ B(r) and xR(θ) ∈ B(r) for all θ ∈ [0, t].

The following lemma states that if the disturbance is small
enough, the real system trajectory will stay in a tube along the
nominal trajectory during the interval t ∈ [0, Tp + δ].

Lemma 11. Let x(t) be the solution of the nominal system (3) with
u(t) ∈ U for all t ∈ [0, Tp + δ], and x(0) = x0. Given ϵ > 0,
the trajectory xR(·) of the real system (1) defined on [0, Tp + δ], with
xR(0) = x0 and u(t), lies in the tube

S(x0, ϵ) :=

(t, xR) ∈ [0, Tp + δ] × Rnx | ∥xR − x(t)∥ ≤ ϵ


for all β ∈


0, ϵv

ev(Tp+δ)
−1


.

Proof. By continuity of x(t) in t and the compactness of [0, Tp+δ],
altogether with Assumption 6, we know that x(t) is bounded on
[0, Tp + δ]. Furthermore, the set S(x0, ϵ) is a compact set which
contains (t, x(t)) for all t ∈ [0, Tp + δ]. Because of (5) and xR(0) =

x(0), we have

∥xR(t) − x(t)∥ ≤
β

v


evt

− 1

, ∀t ∈ [0, Tp + δ].

Since β

v


evt

− 1

is monotonically increasing in t for fixed v, if β

is small enough such that β

v
(ev(Tp+δ)

− 1) ≤ ϵ, then (t, xR(t)) ∈

S(x0, ϵ) for all t ∈ [0, Tp + δ].

Denote the boundary of the set Xf as X̄f , X̄f := {x ∈ Rnx |

xTPx = α}, and the boundary of the set Ω as Ω̄, Ω̄ := {x ∈ Rnx |

xTPx = e−πδα}. The following lemma gives an estimate on the
relation of the sets Xf and Ω .

Lemma 12. The relation dr(Xf , Ω) of the sets Xf and Ω satisfies

dr(Xf , Ω) ≥


λmin(P−1) ·


α

1
2 −


e−πδα

 1
2


.

Proof. Denote h := P
1
2 x and s := P

1
2 y and define X̃f = {h ∈ Rnx |

hTh = α} and Ω̃ = {s ∈ Rnx | sT s = e−πδα}. Notice that P
1
2 is

invertible since P is positive definite. Then,
dr(Xf , Ω)

2
= min

x∈X̄f , y∈Ω̄

(x − y)T (x − y)

= min
h∈X̃f , s∈Ω̃

(h − s)TP−1(h − s)

≥ λmin(P−1) · ∥h − s∥2.

Due to the triangle inequality ∥h−s∥ ≥ ∥h∥−∥s∥ holds.Moreover,

∥h∥ = α
1
2 and ∥s∥ =


e−πδα

 1
2 for all x ∈ X̄f and y ∈ Ω̄ ,

respectively. Hence,

dr(Xf , Ω) ≥


λmin(P−1) · ∥h − s∥

≥


λmin(P−1) · (∥h∥ − ∥s∥)

=


λmin(P−1) ·


α

1
2 −


e−πδα

 1
2


.

Denote d0r (Xf , Ω) :=


λmin(P−1)


α

1
2 −


e−πδα

 1
2


and

β0 :=
v · d0r (Xf , Ω)

ev(TP+δ) − 1
.

Suppose that β0 is an upper bound on the disturbances, i.e., β ≤

β0, then according to Lemma 11 the system trajectory of the real
system (1) lies in the tube S(x0, ϵ0) along the nominal system
trajectory in the interval [0, Tp + δ], where ϵ0 := d0r (Xf , Ω).

For all ϵ ∈ (0, d0s (Xf , Ω)], if the terminal state of the nominal
system is in the set Ω , then also the terminal state of the real
system will be in the terminal set. That is, xR(Tp + δ) ∈ Xf , see
Fig. 1.

Now we are in a position to state the main result of this
subsection, which shows the recursive feasibility of nominal MPC
in the presence of disturbances.

Theorem 13. Assume that Problem 4 has a feasible solution at x(t0),
and denote the corresponding predicted nominal control and state as
u(τ , x(t0)) and x(τ , x(t0)), respectively, τ ∈ [t0, t0 + Tp]. Suppose
that β ≤ β0, then, ũt0+δ(·) ∈ Lnu

[t0+δ,t0+δ+Tp] with

ũt0+δ(τ ) =


u(τ , x(t0)) τ ∈ [t0 + δ, t0 + Tp],
Kx(τ , x(t0)) τ ∈ (t0 + Tp, t0 + δ + Tp],
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Fig. 1. Tube along the nominal trajectory in [0, Tp + δ]. Dashed line shows the
nominal trajectory, solid line is the real trajectory. Dashed ellipsoid depicts Ω , the
larger ellipsoid represents Xf .

is a feasible solution to Problem 4 at xR(t0 + δ), where xR(t0 + δ) is
a point on the trajectory of the real system starting from x(t0) under
the control u(τ , x(t0)), τ ∈ [t0, t0 + δ]. The term x(τ , x(t0)), for all
τ ∈ [t0 +Tp, t0 +Tp +δ], is the nominal state trajectory starting from
the state x(t0+Tp, x(t0)) under the linear control lawKx. Furthermore,
(t0 + δ, xR(t0 + δ)) ∈ S (x(t0), ϵ0).

Proof. Following Lemma 9, the control function
ūt0(·) ∈ Lnu

[t0,t0+δ+Tp] with

ūt0(τ ) :=


u(τ , x(t0)) τ ∈ [t0, t0 + Tp],
Kx(τ , x(t0)) τ ∈ (t0 + Tp, t0 + δ + Tp],

drives the trajectory of the nominal system from x(t0) into the set
Ω in the interval [t0, t0 + δ + Tp], i.e., x(t0 + δ + Tp, x(t0)) ∈ Ω .
Moreover, the trajectory of the real system with the same control
function will lie in the tube S(x0, ϵ0) for all t ∈ [t0, t0 + Tp + δ] and
for all w ∈ W . Thus, xR(t0 + δ + Tp, x(t0)) ∈ Xf . Consequently,
ũt0+δ(·) is a feasible solution to Problem 4 at xR(t0 + δ).

Theorem 13 proves recursive feasibility, i.e., it is shown that
there exists a feasible solution to Problem 4 at each time instant
even in the presence of small bounded additive disturbances.

3.3. Robust stability

We consider system (1) with respect to persistent disturbances
and the repeated application of open-loop inputs obtained as
solutions to Problem 4. Due to the existence of persistent bounded
disturbances, asymptotic stability might not be achieved. As a
consequence, we desire only ‘‘ultimate boundedness’’ results.

Since the optimal cost function J0(x), which is chosen as the
candidate Lyapunov function in the proof of nominal stability of
quasi-infinite horizon MPC, is not necessarily continuous in the
feasible region, it is hard to show inherent robustness properties
of quasi-infinite horizon MPC directly. We prove that the system
trajectory will converge to a set around the origin even though
there exist persistent disturbances.

Assume that Problem 4 has an optimal solution at x(ti), and
denote the corresponding predicted nominal control and state as
u∗(τ , x(ti)) and x∗(τ , x(ti)), respectively, for τ ∈ [ti, ti + Tp].
Denote a function ûφ ∈ Lnu
[0,TP ]

with

ûφ(s) :=


u∗(s + φ, x(ti)) s ∈ [0, ti + Tp − φ),
Kx(s + φ, x(ti)) s ∈ [ti + Tp − φ, Tp],

with parameterφ ∈ [ti, ti+Tp], and inwhich x(s+φ, x(ti)) denotes
for all s ∈ [ti+Tp−φ, Tp] the nominal state trajectory starting from
the state x∗(ti + Tp, x(ti)) under the linear control law Kx.

Denote the set

H(x(ti)) :=


(t, x) ∈ [ti, ti + Tp] × Rnx | ∥x − x∗(t, x(ti))∥

≤
β

v


ev(t−ti) − 1


, (6)

which contains all states that can be reached along trajectories
of the real system starting from x(ti), under the control ûti for all
w ∈ W and for all t ∈ [ti, ti + Tp], see Lemma 10. Furthermore, the
set H(x(ti)) is a compact set.

On account of Theorem 13, ûti(s) is the optimal solution to
Problem 4 at x(ti) and ûφ is a feasible (but not necessarily optimal)
solution to Problem 4 at any initial state x(φ) := xR(φ, x(ti)) with
φ ∈ [0, Tp].

Denote a set

Ψ (x(ti))

:=


x ∈ Rnx | ∥x − x∗(ti + δ, x(ti))∥ ≤

β0

v
(evδ

− 1)


, (7)

which contains all possible states of the system (1) at the time
instant ti + δ starting from the state x(ti) under the control ûti .
For all x ∈ Ψ (x(ti)), ûti+δ is a feasible solution to Problem 4. For
simplicity, denote the value of J(x, ûti+δ(·)) as J̄(x). The next lemma
shows that J̄(x) is continuous in Ψ (x(ti)).

Lemma 14. The cost function J̄(x) is continuous with respect to x for
all x ∈ Ψ (x(ti)).

Proof. The proof consists of two parts. In the first part, we prove
that the solution of

˙̂x(t) = f (x̂(t), ûti+δ(t)), x̂(0) = x (8)

depends continuously on x for all x ∈ Ψ (x(ti)). In the second part,
we will prove the continuity of J̄(x) with respect to x.
First part: Let x̂(·, x1) and x̂(·, x2) be the solution of (8) starting from
x = x1 and x = x2, respectively. Similar to Lemma 10, we have

∥x̂(τ , x1) − x̂(τ , x2)∥ ≤ ∥x1 − x2∥evτ , ∀τ ∈ [0, Tp].

For any ε > 0, we can choose δ = εe−vTp . Then for all x1, x2 which
satisfy ∥x1 − x2∥ ≤ δ = εe−vTp

∥x̂(τ , x1) − x̂(τ , x2)∥ ≤ ε

holds for all τ ∈ [0, Tp].

Second part: We emphasize that J̄(x) = J(x, ûti+δ(·)) is the cost
function of the nominal system (8) along the prediction horizon.
The continuity of J̄(x) follows from the continuity of the solution
of (8) with respect to x and continuity of the functions ∥x∥2

Q and
∥x∥2

P .

Since J̄(x) ≥ 0 for all x ∈ Ψ (x(ti)), it has a lower bound; since
both Ψ (x(ti)) and U are compact sets, J̄(x) has an upper bound for
all x ∈ Ψ (x(ti)). Denote the supremum and the infimum of J̄(x) for
all x ∈ Ψ (x(ti)) by M(x(ti)) andm(x(ti)), respectively and define

1M(x(ti)) := M(x(ti)) − m(x(ti)).
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Furthermore, due to the definition (7)Ψ (x(ti)) → {x∗(ti+δ, x(ti))}
for β → 0, i.e., the set Ψ converges to a single point. Hence, the
supremum and infimum in this set coincide and, consequently,
1M(x(ti)) → 0 for β → 0. Moreover, the convergence is uniform
for all x(ti), see (7).

For the fixed prediction horizon Tp and the terminal set Xf ,
Problem 4 is feasible at all time instants t ≥ t0 for system (1) with
respect to persistent but bounded disturbances, if it is feasible at
time instant t = 0. Denote the feasible set of system (1) as Xr ,

Xr :=


x0 ∈ Rnx | Problem 4 has a feasible

solution for x(0) = x0

.

In order to show the boundedness of Xr , we will introduce
a lemma which is a variant of Gronwall–Bellman Inequality, see
Khalil (2002, Lemma A.1).

Lemma 15. Let λh : [a, b] → R and µh : [a, b] → R be continuous
and nonnegative. If a continuous function y : [a, b] → R satisfies

y(t) ≤ λh(t) −

 t

b
µh(s)y(s)ds

for a ≤ t ≤ b, then in the same interval

y(t) ≤ λh(t) +

 b

t
λh(s)µh(s) exp


−

 t

s
µh(τ )dτ


ds.

Proof. The proof follows closely that of Khalil (2002, Lemma A.1).
However, note that the sign of the integral is switched. Hence,
Khalil (2002, Lemma A.1) is not directly applicable. Let z(t) = b
t µh(s)y(s)ds, and v(t) = z(t) + λh(t) − y(t) ≥ 0. Then, z is

differentiable and

ż = −µh(t)y(t) = −µh(t)[z(t) + λh(t) − v(t)].

This is a scalar linear state equation with the transition function

Φ(t, s) = exp

−

 t

s
µh(τ )dτ


.

Since z(b) = 0, we have

z(t) =

 b

t
Φ(t, s)[µh(s)λh(s) − µh(s)v(s)]ds.

The term b

t
Φ(t, s)µh(s)v(s)ds

is nonnegative. Therefore,

z(t) ≤

 b

t
Φ(t, s)µh(s)λh(s)ds

=

 b

t
e−

 t
s µh(τ )dτµh(s)λh(s)ds.

Since y(t) ≤ λh(t) + z(t),

y(t) ≤ λh(t) +

 b

t
e−

 t
s µh(τ )dτµh(s)λh(s)ds.

We can now show the following crucial property of Xr .

Lemma 16. The set Xr is bounded.
Proof. Let x0 ∈ Xr be an initial state of the nominal system (3).
Denote by x(t, x0), t ∈ [0, Tp], the predicted trajectory of

ẋ = f (x, u), x(t0) = x0

for some control trajectory with u(τ ) ∈ U and with x(Tp) =

x(Tp, x0) ∈ Xf . Then,

x(t, x0) − x(Tp) = −

 Tp

t
f (x(s, x0), u(s))ds.

Hence, due to the triangle inequality and (4)

∥x(t, x0) − x(Tp)∥

≤

 Tp

t
∥f (x(s, x0), u(s))∥ds

≤

 Tp

t
∥f (x(s, x0), u(s)) − f (x(Tp), u(s))∥ds

+

 Tp

t
∥f (x(Tp), u(s))∥ds

≤

 Tp

t
v∥x(s, x0) − x(Tp)∥ds + h0(Tp − t)

with h0 := ∥f (x(Tp), u(s))∥. Application of Lemma 15 to the
function ∥x(t, x0) − x(Tp)∥ results in

∥x(t, x0) − x(Tp)∥ ≤
h0

v


evTp − evt .

Since x0 = x(0, x0) and x(Tp) ∈ Xf , it directly follows

∥x0∥ ≤ ∥x(Tp)∥ + ∥x(0, x0) − x(Tp)∥

≤


α

λmin(P)
+

h0

v
(evTP − 1).

Since x(Tp) ∈ Xf and u(s) ∈ U,

h := max
u∈U
x∈Xf

∥f (x, u)∥

is finite and we have

∥x0∥ ≤


α

λmin(P)
+

h
v
(evTP − 1).

This completes the proof.

Furthermore, denote

1M := sup
x(ti)∈Xr

1M(x(ti)).

Since Xr is a bounded set, the existence of 1M is guaranteed.

Lemma 17. 1M → 0 for β → 0 with ∥w(t)∥ ≤ β .

Proof. For any x(t) ∈ Xr ,

1M(x(t)) =

 t+Tp

t
∥xR(t + s, x(t))∥2

Q

− ∥x(t + s, x(t))∥2
Q ds

+ ∥xR(t + Tp, x(t))∥2
P − ∥x(t + Tp, x(t))∥2

P .

Denote

1x(t + s, x(t)) := xR(t + s, x(t)) − x(t + s, x(t)),

for all s ∈ [0, Tp], and

qr := max
x∈Xr

∥x∥,

respectively. Then, ∥1x(t + s, x(t))∥ ≤
β

v
(evs

− 1).
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Furthermore,

∥xR(t + s, x(t))∥2
Q − ∥x(t + s, x(t))∥2

Q

= 2x(t + s, x(t))TQ1x(t + s, x(t)) + ∥x(t + s, x(t))∥2
Q

≤ 2λmax(Q )qr∥1x(t + s, x(t))∥
+ λmax(Q )∥1x(t + s, x(t))∥2

and

∥xR(t + Tp, x(t))∥2
P − ∥x(t + Tp, x(t))∥2

P

= 2x(t + Tp, x(t))TP1x(t + Tp, x(t))

+ ∥x(t + Tp, x(t))∥2
P

≤ 2λmax(P)qr∥1x(t + Tp, x(t))∥

+ λmax(P)∥1x(t + Tp, x(t))∥2.

That is,

1M(x(t))

≤

 t+Tp

t
2λmax(Q )∥x(t + s, x(t))∥ ∥1x(t + s, x(t))∥

+ λmax(Q )∥1x(t + s, x(t))∥2ds
+ 2λmax(P)∥x(t + Tp, x(t))∥ ∥1x(t + Tp, x(t))∥

+ λmax(P)∥1x(t + Tp, x(t))∥2. (9)

Integrating the right-hand side of (9) by parts, we obtain

1M(x(t)) ≤
β

v


2λmax(Q )qr


evTp−1

v
− Tp


+

β

v


e2vTp − 1

2v
+

2 − 2evTp

v
+ Tp


+ 2λmax(P)qr


evTp−1

v
− Tp


+

β

v


e2vTp − 2evTp + 1


.

Let Me = 2λmax(Q )qr


evTp−1

v
− Tp


+

β

v


e2vTp − 2evTp + 1


+

2λmax(P)qr


evTp−1

v
− Tp


+

β

v


e2vTp−1

2v +
2−2evTp

v
+ Tp


, which is

finite for a fixed β . Thus, 1M(x(t)) → 0 for β → 0.
Therefore, 1M(x) → 0 for β → 0 because 1M(x(t)) → 0

uniformly in x(t).

For s2 =
α

λmax(P)
, we define a set

Bs :=

x ∈ Rnx | xT x ≤ s2


.

Thus, Bs ⊆ Xf . Furthermore, ∥x∥2 > s2 for all x ∉ Bs. The follow-
ing theorem shows that the state of the real system converges to
Bs as well as Xf .

Theorem 18. Suppose that

(a) the exogenous disturbance satisfies ∥w(·)∥ ≤ β for β > 0
small enough such that β ≤ β0, s ≥

β

v
(evδ

− 1) and 1M ≤

ρλmin(Q )δ(s −
β

v
(evδ

− 1))2 with ρ ∈ (0, 1) and
(b) Problem 4 has a feasible solution at the initial time instant t0.

Then,

(1) Problem 4 is feasible for all t ≥ t0,
(2) the system state converges asymptotically to the set Xf , i.e.,

limt→∞ d(xR(t), Xf ) = 0.
Proof. (1) Since ∥w(t)∥ ≤ β0, recursive feasibility is deduced
directly from Theorem 13.

(2) From the definition of J0(x), it is directly clear that J0(0) = 0
and J0(x) > 0 for all x ≠ 0.

For the sake of contradiction, assume the trajectory of the closed
loop stays outside of Bs, i.e., x(t) ∉ Bs for all t ≥ t0. Then,
x(ti) ∉ Bs for all sampling times ti.

We know that

J̄(x∗(ti + δ, x(ti))) − J0(x(ti))

≤ −

 ti+δ

ti


∥x∗(τ , x(ti))∥2

Q + ∥u∗(τ , x(ti))∥2
R


dτ ,

and, consequently,

J0(xR(ti + δ, x(ti))) − J0(x(ti))
≤ J̄(xR(ti + δ, x(ti))) − J̄(x∗(ti + δ, x(ti)))

−

 ti+δ

ti


∥x∗(τ , x(ti))∥2

Q + ∥u∗(τ , x(ti))∥2
R


dτ . (10)

Due to J̄(xR(ti+δ, x(ti)))− J̄(x∗(ti+δ, x(ti))) ≤ 1M(x(ti)), Eq. (10)
can be rewritten as

J0(xR(ti + δ, x(ti))) − J0(x(ti))
≤ 1M(x(ti))

− λmin(Q )

 ti+δ

ti
∥x∗(τ , x(ti))∥2dτ

− λmin(R)
 ti+δ

ti
∥u∗(τ , x(ti))∥2dτ .

Since ∥xR(τ , x(ti))∥ > s and ∥xR(τ , x(ti)) − x(τ , x(ti))∥ ≤
β

v
(evτ

−

1), for all τ ∈ [ti, ti + δ],

∥x(τ , x(ti))∥ ≥
 ∥xR(τ , x(ti))∥

− ∥xR(τ , x(ti)) − x(τ , x(ti))∥


≥ s −
β

v
(evτ

− 1)

≥ s −
β

v
(evδ

− 1).

Thus,

J0(xR(ti + δ, x(ti))) − J0(x(ti))

< 1M(x(ti)) − λmin(Q )δ


s −

β

v
(evδ

− 1)
2

.

Therefore, with 1M(x(ti)) ≤ 1M and the assumption 1M ≤

ρλmin(Q )δ(s −
β

v
(evδ

− 1))2 in (a)

J0(xR(ti + δ, x(ti))) − J0(x(ti))

< (ρ − 1)λmin(Q )


s −

β

v
(evδ

− 1)
2

< 0. (11)

By induction, J0(xR(ti + δ, x(ti))) → −∞ for i → ∞ that contra-
dicts, however, the fact that J0(x) ≥ 0. Thus, there exists a t ≥ t0
such that x(t) ∈ Bs ⊂ Xf .

Since the cost function J0(x) is monotonically decreasing with
respect to bounded disturbances while x lies outside Bs, see Eq.
(11), the system trajectory will enter the set Xf in finite time and
will stay in it.

Note that 1M ≤ ρλmin(Q )δ(s −
β

v
(evδ

− 1))2 is always sat-
isfied for β small enough because 1M → 0 for β → 0. Hence,
Theorem18 proves that the systemunder control is asymptotically
ultimately bounded for a small enough disturbance.
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Lemma 19. The optimal cost function J0(x) is continuous at x = 0.

Proof. In order to show the continuity of J0(x) at x = 0, we now
investigate the case that x belongs to some neighborhood of the
origin and x ≠ 0.

Since xTPx is continuous at x = 0, for given ι > 0, there exists
η = η(ι) > 0 such that xTPx < ι whenever ∥x∥ < η. Define a set

Xη := {x ∈ Rnx | ∥x∥ < η}.

Without loss of generality, assume that the set Xη ⊂ Xf . For
all x ∈ Xη , a feasible solution to Problem 4, denoted by ū(·), is

ū(t) = Kx(t, x) ∀t ∈ [0, Tp]. (12)

In accordance with Lemma 7, J (x, ū(·)) ≤ xTPx. Since an optimal
solution will be no worse than (12), J0(0) = 0 and J0(x) > 0 for all
x ≠ 0, it follows that ∥x∥ < η implies

|J0(x) − J0(0)| ≤ J (x, ū(·)) ≤ xTPx < ι.

This implies that J0(x) is continuous at x = 0.

Corollary 20. Suppose that the disturbance w(·) is decaying, i.e.,
limt→∞ ∥w(t)∥ = 0, and ∥w(t)∥ ≤ β0, for all t ≥ t0. Then, the
system (1)with model predictive control law is asymptotically stable.

Proof. Recursive feasibility is deduced directly from Theorem 13
because ∥w(t)∥ ≤ β0.

Denote β(t) := maxτ≥t ∥w(τ)∥, and

Ψ0(x(t)) :=


x ∈ Rnx | ∥x − x∗(t + δ, x(t))∥ ≤

β(t)
v

(evδ
− 1)


.

Due to ∥w(τ)∥ ≤ β(t) for all τ ≥ t , we have xR(t + δ, x(t)) ∈

Ψ0(x(t)).
Denote the supremum and the infimum of J0(x) in the set

Ψ0(x(t)) by MΨ0 and mΨ0 , respectively and define

1MΨ0 = MΨ0 − mΨ0 .

Since β(t) → 0 as t → ∞, Ψ0(x(t)) → {x∗(t + δ, x(t))} as
t → ∞. Thus, 1MΨ0 → 0 as t → 0. That is, for any ϵ > 0,
there exists t1 > 0 such that 1MΨ0 ≤ ϵ for all t ≥ t1.

Similar to the proof of Theorem 18, assume there exists a
positive constant ς such that the trajectory of the closed loop stays
outside of Bς , i.e., x(t) ∉ Bς for all t ≥ t0. Then, x(ti) ∉ Bς for all
sampling times ti.

In terms of (10), we have

J0(xR(ti + δ, x(ti))) − J0(x(ti))

≤ ϵ − λmin(Q )

 ti+δ

ti
∥x∗(τ , x(ti))∥2dτ

− λmin(R)
 ti+δ

ti
∥u∗(τ , x(ti))∥2dτ .

Since

lim
ti→∞

∥xR(τ , x(ti)) − x(τ , x(ti))∥ ≤ lim
ti→∞

β(ti)
v

(evτ
− 1)

→ 0,

as ti → ∞,

∥xR(τ , x(ti)) − x(τ , x(ti))∥ ≤
ς

2
, ∀τ ∈ [ti, ti + δ].

Furthermore,

∥x(τ , x(ti))∥ ≥
 ∥xR(τ , x(ti))∥ − ∥xR(τ , x(ti)) − x(τ , x(ti))∥


≥

ς

2
.

Thus,

J0(xR(ti + δ, x(ti))) − J0(x(ti)) ≤ ϵ −
λmin(Q )δς2

4
.

Since ϵ is any positive constant,

J0(xR(ti + δ, x(ti))) − J0(x(ti)) < 0.

By induction, J0(xR(ti + δ, x(ti))) → −∞ for i → ∞ that contra-
dicts, however, the fact that J0(x) ≥ 0.

Together with J0(0) = 0, J0(x) > 0 for all x ≠ 0 and J0(x) be-
ing continuous at the origin, the system (1) with model predictive
control law is asymptotically stable.

Based on the discussion, we conclude that the degree of inher-
ent robustness of quasi-infinite horizon MPC of nonlinear system
with respect to bounded disturbances w(t) depends on

(i) the choice of the terminal set and the terminal penalty
function,

(ii) the upper bound on the disturbance ∥w(t)∥,
(iii) the prediction horizon Tp,
(iv) the Lipschitz constant of the considered system.

Remark 21. The framework in this paper is quite general and, e.g.,
the following two cases can be treated.

(a) If model perturbations exist: Suppose the nominal system is
ẋ = f (x, u) and the real system is ẋ = f (x, u)+1f (x, u)where
the perturbation term 1f (x, u) is continuous, then the distur-
bances w of this paper are w := 1f (x, u). The perturbation
term 1f (x, u) is bounded in the set Xr × U and the bound is
independent of x and u.

(b) If the full state were not measured, or if there were some de-
lays: Suppose that the system state is x, and the observed state
(or the measured state with delay) is x̄, then the disturbances
w of this paper is w := f (x, u) − f (x̄, u).

Remark 22. Strictly speaking, a system with model predictive
control is a sampled-data control system, where the plant is con-
tinuous and the applied input based on the repeated solution of an
optimization problem is discrete. The main issue in sampled-data
control of nonlinear systems is that for a continuous-time nonlin-
ear system it is in general not possible to derive an exact discrete-
time model (Chen & Francis, 1995; Findeisen, 2004; Nesic & Teel,
2001). Thus, for the design of the controller one either designs
a continuous-time controller based on a continuous-time plant
model, then implements an approximated version of this controller
in discrete time. Or one has to find an approximate discrete-time
model of the plant then designs a discrete-time controller based
on this discrete-time model and finally implements the designed
discrete-time controller using a sampler and hold device (Nesic &
Teel, 2001). In this paper, the inherent robustness of a continuous-
time model predictive control based on a continuous-time plant
model is analyzedwhich alsomakes the implementation of the ap-
proximated version of this controller in discrete timemore reliable.

Remark 23. Since the worst-case disturbances for a general class
of nonlinear systems with only few assumptions are considered,
the estimate of the upper bound of the norm of the admissible
disturbances can be expected to be conservative. Future research
might focus on a less conservative estimate of the upper bound of
the uncertainties and disturbances.

The following section discusses the results presented so far
for the special case of linear systems. It will be shown that the
properties of linear systems can be used to prove directly that
quasi-infinite horizon MPC is input-to-state stable (ISS).
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4. Further results on linear systems

In Section 3, we proved that nonlinear systems under quasi-
infinite horizon MPC with respect to persistent disturbances con-
verge to the terminal set, and the origin is stable if the disturbances
are decaying. The optimal cost function, which is chosen as the
candidate Lyapunov function of the quasi-infinite horizon MPC, is
possibly a discontinuous function of x. In principle, input-to-state
stability property of nonlinear systems can be characterizedwith a
possibly discontinuous Lyapunov function (Grüne, 2002, Theorem
4). However, the ISS property of nonlinear systems under quasi-
infinite horizonMPC cannot be asserted directly since the obtained
properties of the optimal cost function are only related to thenomi-
nal system, but not the real system. Itwill be shownhere that linear
systems under quasi-infinite horizon MPC with respect to persis-
tent disturbances are ISS.

Note that nonlinear systems under nominal MPC are ISS if the
set of constraints of the optimization problem does not depend on
the state, and linear systems under nominal MPC are ISS if the set
of constraints is a closed convex polyhedron and the cost function
is linear, or if the set of constraints is a compact convex polyhedron
and the cost function is continuous (Limon et al., 2009). Under the
assumption that the feasible set is a robust positively invariant
set for the closed-loop systems, regional input-to-state stability
of nominal MPC is achieved for discrete-time nonlinear systems
(Magni, Raimondo, & Scattolini, 2006).

Suppose that the considered system is linear, that is, the real
system is

ẋR(t) = AxR(t) + Bu(t) + w(t),

and the nominal system is

ẋ(t) = Ax(t) + Bu(t),

where A ∈ Rnx×nx and B ∈ Rnx×nu . Moreover, x(t), xR(t), and w(t)
have the same dimensions and constraints as the ones introduced
in (1) and (3).

Similar to Lemma 7, the following lemma shows that the LQR
control law Kx, which is a linear quadratic optimal control law, can
be chosen as the terminal control law.

Lemma 24 (Chen & Allgöwer, 1998; Chen, O’Reilly, & Ballance,
2003). Suppose that the pair (A, B) is stabilizable, and that the Riccati
equation

(A + BK)TP + P(A + BK) = −Q − K TRK

admits a unique solution (P, K), where P ∈ Rnx×nx is positive definite,
and K ∈ Rnu×nx . Then, there exists a constant α ∈ (0, ∞) specifying
a neighborhood of the origin Xf := {x ∈ Rnx | xTPx ≤ α} such that

(1) Kx ∈ U, for all x ∈ Xf , i.e., the linear feedback control law
respects the input constraints in the set Xf ,

(2) Xf is invariant for the nominal system controlled by the local
linear feedback u = Kx.

Denote E(x) := xTPx, Kx and E(x) are the LQR control law
and the optimal cost function, respectively, for the related uncon-
strained linear quadratic optimal control problem for all x ∈ Xf

(Molinari, 1977). Furthermore, dE(x)
dt = −xT (Q + K TRK)x and

E(x(t)) =


∞

t xT (s)(Q + K TRK)x(s)ds. Therefore, E(x) can serve
as the terminal penalty function of Problem 4.

Notice that for nonlinear systems, the terminal penalty is only
an upper bound on the cost to go, but that for linear systems it is
an exact equal.

Lemma 25 (Bemporad, Morari, & Dua, 2002). The MPC control law
is equivalent to the terminal control law for all x ∈ Xf .
Remark 26. J0(x) is continuously differentiable and unique for all
x ∈ Xf . This is in contrast to the result in Grimm et al. (2004),
where the value function of MPC, applied to linear systems with
convex constraints, is continuous on the interior of the feasible set.

Denote h2
=

α
λmax(P)

, and define a set

Bh :=

x ∈ Rnx | xT x ≤ h2 .

Thus,Bh is the largest ball inside the terminal setBh, i.e.,Bh ⊆ Xf .
We can now prove ISS for quasi-infinite horizonMPC applied to

linear systems as stated in the following theorem.

Theorem 27. Suppose that

(a) the exogenous disturbance satisfies ∥w(·)∥ ≤ β0, and 1M0 ≤

ρλmin(Q )δh2 with ρ ∈ (0, 1),
(b) the optimization problem has a feasible solution at the initial time

instant t0.

Then,

(1) the optimization problem is feasible for all t ≥ t0,
(2) the system state converges to the set Xf ,
(3) the closed-loop system is input-to-state stable with respect to w.

Proof. (1) and (2) are deduced directly from Theorems 13 and 18,
respectively.

(3) SinceBh ⊆ Xf , the system trajectory under theMPC control
law will also enter into the terminal set Xf in finite time. Since
the optimal cost and the MPC control law are equivalent to the
terminal cost and the terminal control law, respectively, we have

λmin(P)∥x∥2
≤ J0(x) ≤ λmax(P)∥x∥2, ∀x ∈ Xf (13)

and
d
dt

J0(x) =
d
dt

xTPx = ẋTPx + xTPẋ

= xT

(A + BK)TP + P(A + BK)


x

+ wTPx + xTPw.

Since dE(x)
dt = −xT (Q + K TRK)x along the nominal trajectory, we

know that
d
dt

J0(x) = −xT (Q + K TRK)x + wTPx + xTPw

≤ −π0xTPx + wTPx + xTPw

≤ −π0xTPx + 2∥w∥ ∥P∥ ∥x∥.

Therefore,

d
dt

J0(x) ≤ −νπ0λmin(P)∥x∥2,

∀∥x∥ ≥
2∥P∥

(1 − ν)π0λmin(P)
∥w∥, (14)

with ν ∈ (0, 1). Thus, based on (11), (13) and (14), we conclude
that the system is ISS in its feasible region.

Theorem27 proves the inherent robustness properties of quasi-
infinite horizon MPC of constrained linear systems, especially
the ISS property of the systems under control. The optimal cost
function is an ISS-Lyapunov function in the terminal set Xf .

5. Numerical examples

For demonstrating the proposed analysis scheme, we consider
the following two examples.
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5.1. Example 1

Consider the system described by

ẋ(t) = x(t) + 4u(t) + w(t), (15)

which is an open-loop unstable linear system with x(t) ∈ R,
u(t) ∈ R, w(t) ∈ R. Assume that x can be measured and the
control constraint is

−1 ≤ u(t) ≤ 1, ∀t ≥ 0.

The weighting matrices Q and R are chosen as Q = 1 and R = 1.
Solving the LQR problem with the weighting matrices, we get a
linear state feedback control matrix K = −1.2808. The related
Lyapunov matrix is P = 0.3202, the terminal set is Xf = {x ∈

R | xTPx ≤ 0.1952}. The Lipschitz of the system is v = 1, π0 =

λmin(Q + K TRK)/λmax(P) = 8.2462. The open-loop optimization
problem described by Problem 4 is solved in discrete time with
a sample time of δ = 0.1 time units and a prediction horizon of
Tp = 0.3 time units. Thus, according to Theorem 13 the nominal
MPC is feasible at all time instants if |w(t)| ≤ β0 = 0.5364 for
all t ≥ 0 and the nominal optimization problem is feasible at the
initial time instant.

Denote the function sg(·) as

sg(τ ) :=


1 τ ∈ [2kδ, (2k + 1)δ)
−1 τ ∈ [(2k + 1)δ, (2k + 2)δ),

with k ∈ Z[0,∞). The system trajectory starting from x(0) = 3
with nominal MPC and the control input is shown in Fig. 2, where
w(t) ≡ 0.5, w(t) ≡ −0.5 and w(t) = sg(t) · 0.5 for all
t ≥ 0, respectively, and J0 is the optimal cost function. From
Fig. 2, we know that the actual system is ultimately bounded under
nominalMPC control law for the disturbances, i.e., the system state
converges to the terminal set. Comparedwith the results in Grimm
et al. (2004), not only the inherent robustness properties are
confirmed, but also an upper bound on the admissible disturbances
is estimated.

5.2. Example 2

The system described by

ẋ1(t) = x2(t) + u(t) (ϑ + (1 − ϑ)x1(t)) + w(t),
ẋ2(t) = x1(t) + u(t) (ϑ − 4(1 − ϑ)x2(t)) ,

(16)

with ϑ = 0.8. As pointed out in Chen and Allgöwer (1998),
the nominal system of (16) is unstable and stabilizable (but not
controllable). Assume that x1(t) and x2(t) can be measured, and
the control constraint is

−2 ≤ u(t) ≤ 2, t ≥ 0.

The weighting matrices are chosen as

Q =


0.5 0
0 0.5


, R = 1. (17)

Solving the LQR control problemwith theseweightingmatrices for
the locally linearized system,we obtain a linear state feedback gain
K =


2.118 2.118


. The Lyapunov matrix P =


5.9506 0.9506
0.9506 5.9506


,

and the terminal set Xf = {x ∈ R2
| xTPx ≤ 5.2035} in which the

linear control law satisfies the input constraint. Accordingly, π0 =

λmin(Q + K TRK)/λmax(P) = 0.0725. The open-loop optimization
problem described by Problem 4 is solved in discrete time with
a sample time of δ = 0.1 time units and a prediction horizon
of Tp = 1.5 time units. Since

 ∂ f
∂x

 ≤ σmax, we use σmax for all
−2 ≤ u ≤ 2 to get an estimate of the Lipschitz. Thus, v = 2.0142.
Due to Theorem 13, the optimization problem is feasible for all
Fig. 2. State and input trajectories and optimal cost function for the initial state
x(0) = 3. Solid line: casew(t) = sg(t) ·0.5, dashed line: casew(t) ≡ 0.5, dash–dot
line: case w(t) ≡ −0.5.

time instants if |w(t)| ≤ β0 = 2.6 × 10−4 for all t ≥ 0 and the
nominal optimization problem is feasible at the initial time instant.

While the initial state of the system (16) is [0.7 0.8]T , Problem 4
has a feasible solution. Furthermore, the system state [0.7 0.8]T is
driven to the equilibrium since the system is asymptotically stable
if the optimization problem is feasible at the initial time instant. It
shows by simulation that:

(a) if there exists a disturbance w(t) ≡ 0.16, Problem 4 is re-
cursive feasibility and the system state will be driven to a set
around the equilibrium;

(b) if the disturbance is w(t) ≡ 0.17, Problem 4 is infeasible after
some steps. That means the model predictive control scheme
fails and there is no control input after that infeasible instant.

The system starts under control from [0.7 0.8]T can endure the
disturbances w(t) ≡ 0.16 > 2.6 × 10−4, that is because we have

think
矩形
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to consider theworst-case disturbances. Thatmakes the scheme of
estimate as conservative as min–max MPC.

6. Summary

In this paper, we proved that quasi-infinite horizon MPC of
nonlinear systems with input constraints possesses some inherent
robustness properties. The disturbances considered are persistent
but bounded. Different from existing results, the analysis does
not depend on assumptions on convex constraint sets, recursive
feasibility, and continuity of the cost function or of theMPC control
law. Instead, recursive feasibility was directly proven and robust
stability with respect to persistent but bounded disturbances
has been addressed by showing that the system trajectory will
converge to a set around the origin. The results are of theoretical
interest as they indicate that small disturbances can be tolerated
when using quasi-infinite horizon MPC.
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